77 Massachusetts Avenue, Building 76-461 Cambridge, Massachusetts 02139

Curriculum Vitae

EDUCATION

B.A., Biology, University of Rochester, 1973 Ph.D., Anatomy (and Neuroscience), Georgetown University School of Medicine, 1979

TEACHING, RESEARCH, AND ADMINISTRATIVE POSITIONS

2017-pres	Joint Professor of Work and Organization Studies, MIT Sloan School of Management
2012-pres.	President Emerita, Massachusetts Institute of Technology
2012-2013	Marie Curie Visiting Professor, Harvard University, John F. Kennedy School of Government
2004-pres.	Professor of Neuroscience, Massachusetts Institute of Technology
2004-2012	President, Massachusetts Institute of Technology
2003-2004	Provost, Yale University
2001-2004	William Edward Gilbert Professor of Neurobiology, Yale University
1998-2002	Dean, Yale University Graduate School of Arts and Sciences
1994-2004	Professor, Yale University School of Medicine, Department of Neurobiology
1991-1994	Associate Professor (tenure), Yale University School of Medicine, Section of Neurobiology
1989-1991	Associate Professor (term), Yale University School of Medicine, Section of Neurobiology
1986-1994	Director of Graduate Studies, Yale University School of Medicine, Section of Neurobiology
1985-1989	Assistant Professor, Yale University School of Medicine, Section of Neurobiology
1982-1985	Senior Staff Investigator, Cold Spring Harbor Laboratory
1980-1982	Junior Staff Investigator, Cold Spring Harbor Laboratory
1979-1980	National Institutes of Health (NIH) postdoctoral fellow, University of California, San Francisco,
	Department of Anatomy and Neuroscience Program

BOARD MEMBERSHIPS

Belfer Center for Science and International Affairs, Board of Directors, member, 6/2013-present

Boston Symphony Orchestra, Board of Trustees, member, 9/2014-3/2019

Break Though Cancer, Board of Directors, member, 7/2020-present

Cajal Neuroscience, Board of Directors, member, 7/2021-present

Carnegie Corporation of New York, Board of Trustees, member, 9/2006-12/2014

Charles Stark Draper Laboratory, Board of Directors, member, 10/2018-12/2020

Council on Foreign Relations, Board of Directors, member, 7/2014-6/2019

Fidelity Non-Profit Management Foundation, member, 6/2017-present

General Electric Company, Board of Directors, member, 12/2006-4/2018

Lasker Foundation, Board of Directors, member, 4/2020-present

Massachusetts Institute of Technology, Corporation, life member, 7/2012-present

Mass General Brigham Incorporated, Board of Directors, member, 12/2015-present

Pfizer, Inc., Board of Directors, member, 3/2020-present

Qualcomm Incorporated, Board of Directors, member, 7/2012-3/2016

Repertoire Immune Medicines, Board of Directors, member, 4/2021-present

Whitehead Institute for Biomedical Research, Board of Trustees, member, 1/2020-present

World Economic Forum, Foundation Board, member, 1/2008-9/2012 and 9/2014-5/2016

PROFESSIONAL SOCIETIES

American Academy of Arts and Sciences, Fellow 2004

American Association for the Advancement of Science, Fellow

Council on Foreign Relations, Life Member

Society for Neuroscience, Member

AWARDS AND RECOGNITION

YSEA 2021 Award for Distinguished Service to Industry, Commerce or Education, Yale Science and Engineering Association, New Haven, CT, 2022.

D. Walter Cohen, DDS, Service to Science Award, National Disease Research Interchange, Philadelphia, PA, 2022 Doctor of Science (*honoris causa*) degree, New York University, 2022

2020 Phi Beta Kappa Book Awards Shortlist, **The Age of Living Machines: How Biology Will Build the Next Technology Revolution**, 2020

2020 Science Communication Award, American Institute of Physics, **The Age of Living Machines: How**Biology Will Build the Next Technology Revolution, 2020

2019 Charles L. Branch BrainHealth Award, Dallas, 2020

Advocacy Honoree, American Cancer Society Cancer Action Network, Boston, MA, 2019

Geoffrey Beene Builders of Science Award, Research! America, Washington, DC, 2019

The Helen Gurley Brown Presidential Summit on Women and Science Keynote Speaker, Dana-Farber Cancer Institute, Boston, Massachusetts, 2018

Doctor of Humane Letters (honoris causa) degree, Georgetown University, 2018

22nd Annual Link Lecture, Institute of Cancer Research and The Royal Marsden, London, United Kingdom, 2018 2017 Celia White Tabor Lecture, Massachusetts General Hospital, Boston, Massachusetts, 2017

Doctor of Science (honoris causa) degree, Northeastern University, 2016

Doctor of Humane Letters (honoris causa) degree, Duke University, 2014

Arnold D. Kates Lecture, Bowdoin College, Brunswick, Maine, 2014

Edwin L. Godkin Lecture, Harvard University Kennedy School of Government, Cambridge, Massachusetts, 2014

Doctor of Science (honoris causa) degree, University of Massachusetts Medical School, 2013

Doctor of Science (honoris causa) degree, University of Rochester, 2013

Pinnacle Award for Lifetime Achievement, Greater Boston Chamber of Commerce, 2013

American Academy of Rome, Carnegie Corporation/Vartan Gregorian Affiliated Fellow, 2012

Association of Alumni and Alumnæ of the Massachusetts Institute of Technology, Honorary Member, 2010

Edison Achievement Award, 2010

Royal Irish Academy, Honorary Member, 2010

Doctor honoris causa degree, University Pierre and Marie Curie, Paris, France, 2010

Doctor *honoris causa* degree, jointly awarded by the New University of Lisbon, the Technical University of Lisbon, and the University of Porto, Portugal, 2009

America's Best Leaders 2009 honoree, U.S. News & World Report and the Center for Public Leadership, John F. Kennedy School of Government, Harvard University, 2009

Citation Award, Midwest Research Institute, 2009

Doctor of Science (honoris causa) degree, University of Edinburgh, Scotland, 2009

Doctor of Science (honoris causa) degree, Mount Sinai School of Medicine, New York University, 2009

Council on Foreign Relations, Life Member, 2007

Doctor of Science (honoris causa) degree, Brown University, 2006

Doctor of Science (honoris causa) degree, Cold Spring Harbor Laboratory, Watson School of Biological Sciences, 2006

Honorary doctorate degree, Tsinghua University, China, 2006

Amelia Earhart Award, Women's Union, 2005

Golden Plate Award, Academy of Achievement, 2005

American Association for the Advancement of Science, Fellow (neuroscience), 2005

Sheffield Medal, Yale University, 2004

Meliora Citation for Career Achievement, University of Rochester, 2003

Wilbur Lucius Cross Medal, Yale University Graduate School, 2003

M.A. (hon.), Yale University, 1994

Charles Judson Herrick Award, American Association of Anatomists, 1987

Grass Traveling Scientist, Society for Neuroscience, 1987

Esther A. and Joseph Klingenstein Fellowship in the Neurosciences, 1985

PHS Postdoctoral Research Award, National Institutes of Health, 1980

PROFESSIONAL AND NATIONAL SERVICE ACTIVITIES

1/2021-present	Harvard/MIT MD/PhD Program, Board of Overseers, member
-	MIT Energy Initiative, External Advisory Board, member
2/2018-2/2019	American Association for the Advancement of Science, chairman 2018
12/2017 - present	Cancer Research Centre of Excellence, London, Scientific Advisory Board, member
•	Harvard Medical School Dean's Special Advisors Group, member
7/2017-present	Brigham & Women's Hospital, Boston, Scientific Advisory Board, member
2/2017-2/2018	American Association for the Advancement of Science, president 2017
6/2016	"Convergence: The Future of Health," report co-chair with Phillip Sharp and Tyler Jacks
2/2016-2/2017	American Association for the Advancement of Science, president-elect 2016
1/2015-5/2020	Andrew Carnegie Fellows Program jury, Carnegie Corporation of New York, chair
9/2014-1/2016	World Economic Forum, Forum Academy, chair
5/2014-11/2015	Commission to Review the Effectiveness of the National Energy Laboratories, U.S. Department
	of Energy, member
1/2014-2016	David Geffen School of Medicine, UCLA, Scientific Advisory Board, member
2/2013-5/2014	Key Challenge Areas for Convergence, Committee of the National Academies, member
11/2012-11/2013	U.S. Science Envoy, U.S. Department of State
2/2012-6/2012	Sorbonne University Strategy Committee, member
6/2011-10/2012	Advanced Manufacturing Partnership Steering Committee, Co-Chair, sponsored by the
	Executive Office of the President of the United States
12/2010-7/2012	WGBH Educational Foundation, Inc., Board of Trustees, ex officio, Institutional Trustee
7/2009-7/2012	Eli and Edythe L. Broad Institute of MIT and Harvard, Board of Directors, ex officio, member
5/2009-3/2012	Zayed Future Energy Prize, member of the Jury
2/2009-7/2012	Ragon Institute of MGH, MIT, and Harvard, Governance Board, ex officio, member
1/2009-1/2012	The Climate Group, Leadership Council, member
7/2008-11/2008	Association of American Universities (AAU), Task Force on the 2008 Election, member
8/2007-7/2012	Association of American Universities (AAU), Advisory Task Force on Indirect Costs, member
7/2007-3/2012	Broad Prize for Urban Education, Selection Jury, member
7/2007-3/2009	Carnegie Corporation of New York – Institute for Advanced Study (IAS), Commission on
	Mathematics and Science Education, member
5/2007-7/2012	Council on Foreign Relations, Higher Education Working Group on Global Issues, member
5/2007-5/2009	Council on Competitiveness, Energy Security, Innovation and Sustainability Initiative Steering
	Committee, member
5/2007-8/2009	National Math and Science Initiative, Inc., Board of Directors, member
2/2007-4/2012	Massachusetts General Hospital, Scientific Advisory Committee, member
1/2007-7/2012	Massachusetts Life Sciences Collaborative Leadership Council, Co-Chair
2006-7/2012	European Humanities University, International Support Committee, member

7/2006-11/2006	Republic of Singapore, Research, Innovation, and Enterprise Council, member
5/2006-7/2012	Woods Hole Oceanographic Institution, ex officio, Corporation member
2/2006-2/2007	Universities Research Association, Council of Presidents, Chair
2005-2008	United States Department of Justice, National Security Higher Education Advisory Board,
2003 2008	member
2005-2007	Cogito.org, Board of Advisors, member
2005-2007	Association of American Universities (AAU), Task Force on Interdisciplinarity, member
3/2005-7/2012	Council on Competitiveness, Executive Committee, member
2/2005-2/2006	Universities Research Association, Council of Presidents, Vice-Chair
1/2005-7/2012	Lord Foundation of Massachusetts, Class B Director
2004-2007	Association of American Universities (AAU), Task Force on Export Controls, member
2004-2007	National Institutes of Health, National Advisory Neurological Disorders and Stroke Council,
2002-2004	member
2002	Council of Graduate Schools, Member of the Board
2002	Association of Graduate Schools, Executive Committee, member
2000-2004	American Association for the Advancement of Science (AAAS), Section of Neuroscience,
2000-200 F	Member-at-Large
1999-2002	Human Frontier Science Program, Council of Scientists, member
1998-2004	Cold Spring Harbor Laboratory, Board of Trustees, member
1997-2002	James S. McDonnell Foundation, Brain Cancer Advisory Panel, member
1997	Gordon Conference on Neural Plasticity, Chair
1997-1999	Astra Pharmaceuticals, Neuroscience Advisory Board, member
1996-2002	Calvin Hill Day Care Center and Kitty Lustman Findling Kindergarten, Board Member
1996-2000	Hereditary Disease Foundation, Scientific Advisory Board, member
1995	Gordon Conference on Neural Plasticity, Co-chair
1994	NeuroImage, Editorial Board, member
1993	Learning and Memory, Editorial Board, member
1992-1996	Neuroscience Protocols, Editorial Board, member
1992-1996	Society for Neuroscience, Councilor
1991-1995	Hereditary Disease Foundation, Scientific Advisory Board, member
1990-1995	Cerebral Cortex, Editorial Board, member
1989-1991	Society for Neuroscience, Short Course on Basics of Molecular Biology for Neurobiologists,
	organizer
1988-1994	Journal of Neuroscience, Editorial Board, member
1988-1992	National Institutes of Health, Study Section, Visual Sciences B, member
1988-2002	Haskins Laboratory, Board of Directors, member
1988-2002	Yale-New Haven Teachers Institute, University Advisory Council, member
1985-1997	Cold Spring Harbor Laboratory, Summer Neurobiology Program, Program Director
1985	Cold Spring Harbor Laboratory, Course on Molecular Cloning of Eukaryotic Genes, participant
1984-1986	Cold Spring Harbor Laboratory, Course on Immunoglobulins: Molecular Probes of the Nervous
	System, organizer
1983	Society for Neuroscience, Short Course on Molecular Approaches to the Nervous System,
	organizer
1981	Society for Neuroscience, Short Course on New Approaches in Developmental Neurobiology,
	instructor
1981	Cold Spring Harbor Laboratory, Course on Neurobiology of the Leech, participant
1979- 1980	Cold Spring Harbor Laboratory, Pain Workshop, participant

BIBLIOGRAPHY

Opinion Pieces

- "Opening the path to biotech," Science, May 7, 2021, coauthored with Sangeeta Bhatia and Nancy Hopkins.
- "Our science, our society," Science, February 2, 2018.
- "Convergence: The Future of Health," Science, February 10, 2017, coauthored with Phillip Sharp.
- "Capitalizing on Convergence for Health Care," *Science*, June 24, 2016, coauthored with Phillip Sharp and Tyler Jacks.
- "A New Century's New Technologies," Project Syndicate, January 22, 2015.
- "Closing America's Innovation Deficit," The National Interest, April 28, 2014.
- "Manufacturing a Recovery," New York Times, August 29, 2011.
- "Riding the Innovation Wave," Boston Globe, March 14, 2011, coauthored with Drew Faust.
- "For Future Prosperity, Sow Seeds Now," Boston Globe, August 14, 2010, coauthored with Paul E. Jacobs.
- "Immigrant Scientists Create Jobs and Win Nobels," Wall Street Journal, October 20, 2009.
- "The Next Innovation Revolution," Science, February 27, 2009.
- "The Next Step in Stimulus: Long-Term Economic Growth," Boston Globe, February 13, 2009.
- "Reimagining Energy," Washington Post, September 11, 2008.
- "Gaining Ground on Cancer," Boston Globe, April 28, 2008.
- "Numbers That Can Change the World," Boston Globe, April 14, 2008.
- "MIT's Burgeoning Role in the Green Movement," Boston Globe, April 7, 2008.
- "Investing in the Nation's Future," Boston Globe, March 31, 2008.
- "A Model for Tackling the Energy Challenge," Boston Globe, December 13, 2006.
- "The Innovation Equation," Boston Globe, October 12, 2006.
- "Women in Math, Engineering, and Science: Drawing on Our Country's Entire Talent Pool," *Boston Globe*, February 12, 2005, coauthored with John Hennessy and Shirley Tilghman.

Original Articles

- 1. Hockfield, S. and S. Gobel. Neurons in and near nucleus caudalis with long ascending projection axons demonstrated by retrograde labeling with horseradish peroxidase. *Brain Research* **139**: 333-339 (1978).
- 2. Hockfield, S. and S. Gobel. An anatomical demonstration of projections to the medullary dorsal horn (Trigeminal Nucleus Caudalis) from rostral trigeminal nuclei and the contralateral caudal medulla. *Brain Research* 252: 203-211 (1982).
- 3. McKay, R. and S. Hockfield. Monoclonal antibodies distinguish antigenically discrete neuronal types in the vertebrate central nervous system. *Proc. Natl. Acad. Sci. U.S.A.* **79**: 6747-6751 (1982).
- 4. Hockfield, S. and R. McKay. Monoclonal antibodies demonstrate the organization of axons in the leech. *J. Neurosci.* **3**: 369-375 (1983).
- 5. Hockfield, S. and R. McKay. A surface antigen expressed by a subset of neurons in the vertebrate central nervous system. *Proc. Natl. Acad. Sci. U.S.A.* **80**: 5758-5761 (1983).
- Hockfield, S., R. McKay, S. Hendry, and E. G. Jones. A surface antigen that identifies ocular dominance columns in cortical area 17 and laminar features of the lateral geniculate nucleus. Cold Spring Harbor Symp. Quant. Biol. 48: 877-889 (1983).
- 7. McKay, R., S. Hockfield, and J. Johansen. The organization of molecularly distinct axons in the leech connective. Cold Spring Harbor Symp. *Quant. Biol.* 48: 599-610 (1983).
- 8. McKay, R., S. Hockfield, J. Johansen, I. Thompson, and K. Frederiksen. Surface molecules identify groups of growing axons. *Science* **222**: 788-794 (1983).
- 9. Hendry, S., S. Hockfield, E. G. Jones, and R. McKay. A monoclonal antibody that identifies subsets of neurons in the central visual system of the monkey and cat. *Nature* **307**: 267-269 (1984).

- 10. Johansen, J., S. Hockfield, and R. McKay. Distribution and morphology of nociceptive cells in the central nervous system of the leech. *J. Comp. Neurol.* **226**: 255-262 (1984).
- 11. Johansen, J., S. Hockfield, and R. McKay. Axonal projections of mechanosensory neurons in the connective and peripheral nerves of the leech. *J. Comp. Neurol.* **226**: 263-273 (1984).
- 12. McKay, R., J. Johansen, and S. Hockfield. Monoclonal antibody identifies a 63,000 dalton antigen found in all central neuronal cell bodies but in only a subset of axons in the leech. *J. Comp. Neurol.* **226**: 448-455 (1984).
- 13. Hockfield, S. and R. McKay. Identification of major cell classes in the developing mammalian nervous system. *J. Neurosci.* **5**: 3310-3329 (1985).
- 14. Hockfield, S. A novel cerebellar neuron identified by a monoclonal antibody generated with immunosuppressive and rapid immunization strategies. *Science* **237**: 67-70 (1987).
- 15. Sur, M., D. Frost, and S. Hockfield. Expression of a cell surface antigen on Y-cells in the cat lateral geniculate nucleus is regulated by visual experience. *J. Neurosci.* 8: 874–882 (1988).
- Hishinuma, A., S. Hockfield, R. McKay, and J. Hildebrand. Monoclonal antibodies reveal cell type-specific
 antigens in the sexually dimorphic olfactory system of *Manduca sexta*.
 Generation of monoclonal antibodies
 and partial characterization of the antigens. *J. Neurosci.* 8: 296-307 (1988).
- 17. Hishinuma, A., S. Hockfield, R. McKay, and J. Hildebrand. Monoclonal antibodies reveal cell type-specific antigens in the sexually dimorphic olfactory system of *Manduca sexta*. 2. Expression of antigens during postembryonic development. *J. Neurosci.* 8: 308-315 (1988).
- 18. Hendry, S., E. G. Jones, S. Hockfield, and R. McKay. Neuronal populations stained with the monoclonal antibody, Cat-301, in the mammalian cerebral cortex and thalamus. *J. Neurosci.* 8: 518-542 (1988).
- 19. Kalb, R. and S. Hockfield. Molecular evidence for early activity-dependent development of hamster motor neurons. *J. Neurosci.* 8: 2350-2360 (1988).
- 20. Zaremba, S., A. Guimaraes, R. G. Kalb, and S. Hockfield. Characterization of an activity-dependent, neuronal surface proteoglycan identified with monoclonal antibody Cat-301. *Neuron* 2: 1207-1219 (1989).
- 21. Friedman, B., J. A. Black, S. Hockfield, S. G. Waxman, and B. R. Ransom. Antigenic abnormalities in fiber tract astrocytes of myelin-deficient rats: an immunocytochemical study in the olfactory cortex. *Dev. Neurosci.* 11, 99-111 (1989).
- 22. McGuire, P. K., S. Hockfield, and P. Goldman-Rakic. The distribution of Cat-301 immunoreactivity in the frontal and parietal lobes of the macaque monkey. *J. Comp. Neurol.* **288**, 280-296 (1989).
- 23. Geschwind, D. H. and S. Hockfield. Identification of proteins that are developmentally regulated during early cerebral corticogenesis in the rat. *J. Neurosci.* **9**: 4303-4317 (1989).
- 24. Friedman, B., J. Black, K. Woodruff, S. Hockfield, and S. Waxman. Monoclonal antibody RIP produces Golgilike staining of mature oligodendrocytes *in situ*. *Glia* **2**: 380-390 (1989).
- 25. Mize, R. R. and S. Hockfield. Cat-301 antibody selectively labels neurons in the Y-innervated laminae of the cat superior colliculus. *Visual Neurosci.* **3**: 433-443 (1989).
- 26. Kalb, R. and S. Hockfield. Large diameter primary afferent input is required for developmental expression of a proteoglycan on the surface of motor neurons. *Neuroscience* **34**: 391-401 (1990).
- 27. Hockfield, S., R. Tootell, and S. Zaremba. Molecular differences among neurons reveal an organization of human visual cortex. *Proc. Natl. Acad. Sci.* 87:3027-3031 (1990).
- 28. Friedman, B., S. Zaremba, and S. Hockfield. Monoclonal antibody Rat-401 recognizes Schwann cells in mature and developing peripheral nerve. *J. Comp. Neurol.* **295**: 43-51 (1990).
- 29. DeYoe, E. A., S. Hockfield, H. Garren, and D. Van Essen. Antibody labeling of functional subdivisions in visual cortex: Cat-301 in V1, V2, V3 and MT of the Macaque monkey. *Visual Neurosci.* 5: 67-81 (1990).

- 30. Sahin, M. and S. Hockfield. Molecular identification of the Lugaro cell in the cat cerebellar cortex. *J. Comp. Neurol.* **301**: 575-584 (1990).
- 31. Zaremba, S., J. R. Naegele, C. J. Barnstable, and S. Hockfield. Monoclonal antibodies Cat-301 and VC1.1 define different high molecular weight glycoconjugates. *J. Neurosci.* **10**: 2985-2995 (1990).
- 32. Guimarães, A., S. Zaremba, and S. Hockfield. Molecular and morphological changes in cat lateral geniculate nucleus and visual cortex induced by visual deprivation are revealed by monoclonal antibodies Cat-301 and Cat-304. *J. Neurosci.* 10: 3014-3024 (1990).
- 33. Hockfield, S. and M. Sur. Monoclonal antibody Cat-301 identifies Y-cells in the dorsal lateral geniculate nucleus of the cat. *J. Comp. Neurology* **300**: 320-330 (1990).
- 34. Kalb, R. G. and S. Hockfield. Induction of a neuronal proteoglycan by the NMDA receptor in the developing spinal cord. *Science* **250**: 294–296 (1990).
- 35. Hockfield, S., S. Zaremba, R. G. Kalb, and H. Fryer. Expression of neural proteoglycans correlates with the acquisition of mature neuronal properties in the mammalian brain. Cold Spring Harbor Sympo. *Quant. Biol.* 55: 505-514 (1990).
- 36. Marshall, J., K. A. Martin, M. Picciotto, S. Hockfield, A. C. Nairn, and L. K. Kaczmarek. Identification and localization of a dogfish homologue of human cystic fibrosis transmembrane conductance regulator. *J. Biol. Chem.* **266**: 22749-22754 (1991).
- 37. Fryer, H. J. L., G. M. Kelly, L. Molinaro, and S. Hockfield. The high molecular weight Cat-301 chondroitin sulfate proteoglycan from brain is related to the large aggregating proteoglycan from cartilage, aggrecan. *J. Biol. Chem.* **267**: 9874–9883 (1992).
- 38. Martin, K. A., S. Grant, and S. Hockfield. The *mas* proto-oncogene is developmentally regulated in the rat central nervous system. *Dev. Brain Res.* **68**: 75-82 (1992).
- 39. Perney, T., J. Marshall, K. A. Martin, S. Hockfield, and L. K. Kaczmarek. Expression of the mRNAs for the Kv3.1 potassium channel gene in the adult and developing rat brain. *J. Neurophysiol.* **68**: 756-766 (1992).
- 40. Kalb, R. G., M. Lidow, and S. Hockfield. NMDA receptors are transiently expressed in the developing spinal cord ventral horn. *Proc. Natl. Acad. Sci. U.S.A.* **89**: 8502-8506 (1992).
- 41. Kalb, R. G. and S. Hockfield. Activity-dependent development of spinal cord motor neurons. *Brain Res.* Reviews, 17: 283-289 (1992).
- 42. Martin, K. A. and S. Hockfield. Expression of the mas proto-oncogene in the rat hippocampal formation is regulated by neuronal activity. *Mol. Brain Res.* **19**: 303-309 (1993).
- 43. Sahin, M. and S. Hockfield. Identification of putative protein tyrosine phosphatases in developing rat brain. *J. Neurosci.* **13**: 4968-4978 (1993).
- 44. Kind, P., C. Blakemore, H. Fryer, and S. Hockfield. Identification of proteins down-regulated during the postnatal development of the cat visual cortex. *Cerebral Cortex* 4: 361-375 (1994).
- 45. Kalb, R. G. and S. Hockfield. Electrical activity in the neuromuscular unit can influence the molecular development of motor neurons. *Developmental Biology* **162**: 539-548 (1994).
- 46. Jaworski, D. M., G. Kelly, and S. Hockfield. BEHAB, a new member of the proteoglycan tandem repeat family of hyaluronan binding proteins, that is restricted to the brain. *J. Cell Biology* **125**: 495-509 (1994).
- 47. Sahin, M., J. J. Dowling, and S. Hockfield. Seven protein tyrosine phosphatases are differentially expressed in the developing rat brain. *J. Comp. Neurol.* **351**: 617-631 (1995).
- 48. Minturn, J., D. Geschwind, H. J. L. Fryer, and S. Hockfield. Early postmitotic neurons transiently express TOAD-64, a neural specific, membrane associated protein. *J. Comp. Neurol.* **355**: 369-379 (1995).

- 49. Jaworski, D. M., G. Kelly, and S. Hockfield. The CNS specific hyaluronan-binding protein, BEHAB, is expressed in ventricular zones coincident with gliogenesis. *J. Neurosci.* **15**: 1352-1362 (1995).
- 50. Thormodsson, F. R., L. J. Redmond, and S. Hockfield. Identification of nuclear proteins that are developmentally regulated in embryonic rat brain. *J. Neurochemistry* **64**: 1919–1927 (1995).
- 51. Boyne, L. J., K. Martin, S. Hockfield, and I. Fischer. Expression and distribution of phosphorylated MAP1B in growing axons of cultured hippocampal neurons. *J. Neuroscience Res.* **40**: 439-450 (1995).
- 52. Sahin, M., S. A. Slaugenhaup, J. F. Gusella, and S. Hockfield. A protein tyrosine phosphatase, PTPH1, is expressed in a segment-specific pattern in the rat diencephalon. *Proc. Natl. Acad. Sci.* **92**: 7859-7863 (1995).
- 53. Minturn, J., H. J. L. Fryer, D. Geschwind, and S. Hockfield. TOAD-64, a gene expressed early in neuronal differentiation in the rat, is related to *unc-33*, a *C. elegans* gene involved in axon outgrowth. *J. Neurosci.* 15: 6757-6766 (1995).
- 54. Redmond, L. J., S. Hockfield, and M. Morabito. The divergent homeobox gene PBX1 is expressed in the postnatal subventricular zone and the interneurons of the olfactory bulb. *J. Neurosci.* **16**: 2972-2982 (1996).
- 55. Jaworski, D. M., G. M. Kelly, J. M. Piepmeier, and S. Hockfield. BEHAB (Brain Enriched Hyaluronan Binding) is expressed in surgical samples of glioma and in intracranial grafts of invasive glioma cell lines. *Cancer Research* 56: 2293-2298 (1996).
- 56. Geschwind, D. H., G. Kelly, H. J. L. Fryer, and S. Hockfield. Identification and characterization of novel developmentally regulated proteins in rat spinal cord. *Dev. Brain Research* 97: 62-70 (1996).
- 57. Kind, P. K., G. Kelly, H. J. L. Fryer, C. Blakemore, and S. Hockfield. PLC-β1 is present in the botrysome, an intermediate compartment-like organelle, during periods of developmental plasticity in cat visual cortex. *J. Neurosci.* 17: 1471-1480 (1997).
- 58. Redmond, L. J., H. Xie, L. Ziskind-Conhaim, and S. Hockfield. Cues intrinsic to the spinal cord determine the pattern and timing of innervation by primary afferent axons. *Developmental Biology* **182**: 205-218 (1997).
- 59. Lander, C., P. Kind, M. Maleski, and S. Hockfield. A family of activity-dependent neuronal cell-surface chondroitin sulfate proteoglycans in cat visual cortex. *J. Neurosci.* 17: 1928-1939 (1997).
- 60. Maleski, M. and S. Hockfield. Glial cells assemble hyaluronan-based pericellular matrices *in vitro*. *Glia* **20**: 193-202 (1997).
- 61. Lurie, D. I., T. R. Pasic, S. Hockfield, and E. W. Rubel. Development of Cat-301 immuno-reactivity in auditory brainstem nuclei of the gerbil. *J. Comp. Neurology* **380**: 319-334 (1997).
- 62. Lander, C., H. Zhang, and S. Hockfield. Neurons produce a neuronal cell-surface associated chondroitin sulfate proteoglycan. *J. Neurosci.* **18**: 174–183 (1998).
- 63. Zhang, H., G. Kelly, C. Zerillo, D. M. Jaworski, and S. Hockfield. Expression of a cleaved, brain specific, extracellular matrix protein mediates glioma cell invasion in vivo. *J. Neurosci.* **18**: 2370-2376 (1998).
- 64. Jaworski, D. M., G. Kelly, and S. Hockfield. Intracranial injury acutely induces the expression of the secreted isoform of the CNS-specific hyaluronan-binding protein BEHAB/Brevican. *Experimental Neurology* **157**: 327-337 (1999).
- 65. Matthews, R. T., S. C. Gary, C. Zerillo, M. Pratta, K. Solomon, E. C. Arner, and S. Hockfield. BEHAB/Brevican Cleavage in a glioma cell line is mediated by an ADAMTS family member. *J. Biol. Chem.* **275**: 22695-703 (2000).
- 66. Gary, S. C., C. A. Zerillo, V. L. Chiang, J. U. Gaw, G. Gray, and S. Hockfield. cDNA cloning, chromosomal localization, and expression analysis of human BEHAB/brevican, a brain specific proteoglycan regulated during cortical development and in glioma. *Gene* **256**: 139-147 (2000).
- 67. Nutt, C. L., C. Zerillo, G. Kelly, and S. Hockfield. BEHAB (Brain Enriched Hyaluronan Binding)/ Brevican Increases Aggressiveness of CNS-1 Gliomas in Lewis Rats. *Cancer Res.* **61**: 7056-7059 (2001).

- 68. Benvenuti, S., R. Cramer, C. C. Quinn, J. Bruce, M. Vzelebil, S. Corless, J. Bond, A. Yang, S. Hockfield, A. L. Burlingame, M. D. Waterfield, and P. S. Jat. Differential proteome analysis of replicative senescence in rat embryonic fibroblasts. *Mol. And Cell. Proteomics* 1: 280-292 (2002).
- 69. Matthews, R. T., G. Kelly, C. Zerillo, G. Gray, M. Tiemeyer, and S. Hockfield. Aggrecan glycoforms contribute to the molecular heterogeneity of perineuronal nets. *J. Neurosci.* **22**: 7536-7547 (2002).
- 70. Quinn, C. Q., E. Chen, T. G. Kinjo, G. Kelly, A. W. Bell, P. S. McPherson, and S. Hockfield. TUC-4b, a novel TUC family variant, regulates neurite outgrowth and associates with vesicle in the growth cone. *J. Neurosci.* **23**: 2815-2823 (2003).
- 71. Viapiano, M. S., R. T. Matthews, and S. Hockfield. A novel membrane-associated glycovariant of BEHAB/brevican is upregulated during rat brain development and in a rat model of invasive glioma. *J. Biol. Chem.* **278**: 33239-33247 (2003).
- 72. Viapiano, M. S., W. Bi, J. Piepmeier, S. Hockfield, and R. T. Matthews. Novel tumor-specific isoforms of BEHAB/brevican identified in human malignant gliomas. *Cancer Research* **65**: 6726-6733 (2005):
- 73. Dino, M. R., S. Harroch, S. Hockfield, and R. T. Matthews. Monoclonal antibody Cat-315 detects a glycoform of receptor protein tyrosine phosphatase beta/phosphacan early in CNS development that localizes to extrasynaptic sites prior to synapse formation. *Neuroscience* **142**: 1055-69 (2006).

Reviews and Chapters

- 1. Gobel, S., W. M. Falls, and S. Hockfield. The division of the dorsal and ventral horns of the mammalian caudal medulla into eight layers using anatomical criteria. In: *Pain the Trigeminal Region*, Anderson and Matthews (eds.). Elsevier-North Holland, Amsterdam-New York, 443-453 (1977).
- 2. Gobel, S. and S. Hockfield. An anatomical analysis of the synaptic circuitry of layers I, II, and II of trigeminal nucleus caudalis in the cat. In: *Pain in the Trigeminal Region*. Anderson and Matthews (eds.). Elsevier-North Holland, Amsterdam-New York, 203-211 (1977).
- 3. Gobel, S., S. Hockfield, and M. A. Ruda. Anatomical similarities between medullary and spinal dorsal neurons. In: *Oral-Facial Sensory Motor Functions*. Y. Kawamura and R. Dubner (eds.). Quintessence, Tokyo, 211-223 (1981).
- 4. Hockfield, S., B. Zipser, and R. McKay. Light and electron microscope localization of monoclonal antibodies to leech neural tissue. In: *New Approaches in Development Neurobiology*. Society for Neuroscience, 25-33 (1981).
- Zipser, B., S. Hockfield, and R. McKay. Immunological identification of specific neurons. In: *Neurobiology of the Leech*. K. J. Muller, J. G. Nicholls and G. S. Stent (eds.). Cold Spring Harbor Lab. Publications, Cold Spring Harbor, N.Y., 235-247 (1981).
- 6. Hockfield, S. Molecular correlates of structural and organizational features of mammalian CNS demonstrated with monoclonal antibodies. In: *Molecular Approaches to the Nervous System*. Society for Neuroscience, 54–62 (1983).
- 7. Hockfield, S., K. Frederiksen, and R. McKay. The differentiation of cell types in the vertebrate CNS. In: *Molecular Aspects of Neurobiology*, R. Levi-Montalcini and E. Kandel (eds.), Springer-Verlag, New York and Berlin (1986).
- 8. Hockfield, S., R. Kalb, and A. Guimaraes. Experience-dependent expression of neuronal cell surface molecules. In: *Neuroimmune Networks: Physiology and Diseases*. E. Goetzl, Alan R. Liss (eds.). New York, 57-63 (1989).
- 9. Hockfield, S. Neuronal carbohydrates. Science 247: 733 (1990).
- 10. Hockfield, S. Proteoglycans in neural development. *Seminars in Developmental Biology*, Saunders. Volume 1, 55-63 (1990).
- 11. Hockfield, S. Molecular correlates of activity-dependent development and synaptic plasticity. In: *Synaptic Plasticity*, M. Baudry, et al. (eds.), MIT Press, Boston (1993).

- 12. Hockfield, S. and R. Kalb. Activity-dependent structural changes during neuronal development. *Current Opinions in Neurobiology* 3: 87-92 (1993).
- 13. Hockfield, S. Visual cortical dysfunction. Neurology 43: 453-454 (1993).
- Carlson, S. S. and S. Hockfield. Proteoglycans in the CNS extracellular matrix. In: Extracellular Matrix.
 W. D. Comper (ed.). Harwood, Victoria, Australia (1995).
- 15. Sahin, M. and S. Hockfield. Receptor tyrosine phosphatases in CNS development. In: *Receptor Dynamics in Neural Development*. C. Shaw (ed.). CRC Press, 119-138 (1996).
- 16. Fryer, H. J. L. and S. Hockfield. The role of polysialic acid and other carbohydrate polymers in neural structural plasticity. *Current Opinions in Neurobiology* 6: 113-118 (1996).
- 17. Jaworski, D. M., G. Kelly, and S. Hockfield. The CNS-specific hyaluronan binding protein, BEHAB, is expressed during periods of glial cell generation and motility. *Seminars in the Neurosciences* 8: 391-396 (1996).
- 18. Lander, C. and S. Hockfield. The extracellular matrix of the peripheral and central nervous systems. In: *Encyclopedia of Neuroscience*. G. Adelman and B. Smith (eds.). Elsevier, 697-702 (1999).
- 19. Geschwind, D., F. Thormodsson, and S. Hockfield. Changes in protein expression during neural development analyzed by two dimensional gel electrophoresis. *Electrophoresis* 17: 1677-1682 (1996).
- 20. Hockfield, S. and P. Lombroso. Development of the Cerebral Cortex: IX. Cortical Development and Experience: I. J Am. Acad. Child Adolesc. Psychiatry 37: 992-993 (1998).
- 21. Hockfield, S. and P. Lombroso. Development of the Cerebral Cortex: IX. Cortical Development and Experience: II. *J Am. Acad. Child Adolesc. Psychiatry* 37: 1103-1105 (1998).
- 22. Gary, S. C., G. M. Kelly, and S. Hockfield. BEHAB/brevican: a brain-specific lectican implicated in glioma and glial cell motility. *Current Opinion in Neurobiology* 8: 576-581 (1998).
- 23. Quinn, C. C., G. E. Gray, and S. Hockfield. A family of proteins implicated in axon guidance and outgrowth. J. Neurobiology 41: 158-64 (1999).
- 24. Nutt, C. L., R. T. Matthews, and S. Hockfield. Glial tumor invasion: A role for the upregulation and cleavage of BEHAB/brevican. *The Neuroscientist* 7: 113-122 (2000).
- 25. Gary, S. C. and S. Hockfield. BEHAB/brevican, an extracellular matrix component associated with invasive glioma. *Clinical Neurosurgery* 47: 72-82 (2000).
- 26. Hockfield, S. "The rewards of a life in science." *The Yale Guide to Careers in Medicine and the Health Professions*. R. M. Donaldson, K. S. Lundgren and H. M. Spiro (eds.). Yale University Press (2003).
- 27. Matthews, R. T., C. Lander, and S. Hockfield. "Extracellular matrix of the peripheral and central nervous systems." In: *Encyclopedia of Neuroscience*, 3rd ed., revised and enlarged, CD-ROM format. George Adelman and Barry H. Smith (eds.). Amsterdam, Elsevier, 2004.
- 28. Matthews, R. T. and S. Hockfield. "Brain Proteoglycans." In: *Polysaccharides: Structural Diversity and Functional Versatility, Second Edition.* Severian Dumitriu (ed.). CRC Press, 729-742 (2004).

Books

Hockfield, Susan. The Age of Living Machines: How Technology Will Build the Next Technology Revolution. W. W. Norton and Company (2019).

Hockfield, S., S. Carlson, P. Levitt, C. Evans, L. Silberstein, and J. Pintar. *Molecular Probes of the Nervous System: Selected Methods for Antibodies and Nucleic Acid Probes.* Cold Spring Harbor Laboratory Press (1993).

PATENTS

U.S. Patent 5,635,370. Filed 4/8/94; issued 6/3/97. "DNA encoding BEHAB, a brain hyaluronan-binding protein, and recombinant expression systems for production of BEHAB polypeptides."

- U.S. Patent 6,884,619. Filed 7/16/02; issued 4/26/05. "Inhibition of BEHAB cleavage and primary central nervous system (CNS) tumors."
- U.S. Patent application 20030068661. Filed 4/10/03. "Inhibition of BEHAB cleavage and primary central nervous system (CNS) tumors."
- U.S. Patent application 20030224976. Filed 12/4/03. "Compositions, methods and kits relating to BEHAB and primary CNS tumors."
- U.S. Patent application 20060166290. Filed 7/27/06. "Primary central nervous system tumor specific BEAB isoforms."
- U.S. Patent application 20090117595. Filed 5/7/09. "Primary central nervous system tumor specific BEHAB isoforms."